The extended variational iteration method for local fractional differential equation
نویسندگان
چکیده
An extended variational iteration method within the local fractional derivative is introduced for first time, where two Lagrange multipliers are adopted. Moreover, sufficient conditions convergence of new also established.
منابع مشابه
He’s Variational Iteration Method for Solving Fractional Riccati Differential Equation
We will consider He’s variational iteration method for solving fractional Riccati differential equation. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converges to the exact solution of the problem. The present method performs extremely well in terms of efficiency ...
متن کاملLocal Fractional Variational Iteration Method for
In this article, the local fractional variational iteration method is proposed to solve nonlinear partial differential equations within local fractional derivative operators. To illustrate the ability and reliability of the method, some examples are illustrated. A comparison between local fractional variational iteration method with the other numerical methods is given, revealing that the propo...
متن کاملApplication of He’s Variational Iteration Method to Abelian Differential Equation
In this paper, He’s variational iteration method (VIM) is used to obtain approximate analytical solutions of the Abelian differential equation. This method is based on Lagrange multipliers for identification of optimal values of parameters in a functional. Using this method creates a sequence which tends to the exact solution of problem. The method is capable of reducing the size of calculation...
متن کاملA Local Fractional Variational Iteration Method for Laplace Equation within Local Fractional Operators
and Applied Analysis 3 The nonlinear local fractional equation reads as L α u + N α u = 0, (19) where L α and N α are linear and nonlinear local fractional operators, respectively. Local fractional variational iteration algorithm can be written as [37] u n+1 (t) = u n (t) + t0 I t (α) {ξ α [L α u n (s) + N α u n (s)]} . (20) Here, we can construct a correction functional as follows [37]: u n+1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2021
ISSN: ['0354-9836', '2334-7163']
DOI: https://doi.org/10.2298/tsci200201054y